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In this theory, nodes need not be individual neurons. Instead there is a base branch-
ing structure given by the different ways to form composite nodes (tuples) that have
comparable states. Below is an example.
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Some branches give efe-histograms that have much longer left tails than others. Hence,
the definition of efe generalises to involve weighted relations on those branches.

Base branching structure

For a given system (S, V, P ), we can choose weighted relations uniformly at random
and compute the efe values to obtain an efe-histograms.
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Research suggests that efe-distributions with long left tails are most important; when
P is uniformly random the left tail disappears.

efe-histograms obtained from Monte-Carlo methods

With potential relevance to the visual cortex, digital photographs can be sampled to
approximate P for systems that are biased toward such states. In this example the
photographs have a four shade gray scale, giving #V = 4, and five sampling locations
are used giving #S = 5. At higher computational cost, the example could equally
well use colour photographs.

Below is a graph illustration of an approximate solution to (1), showing strongest
relationships (solid lines) and intermediate relationships (dash lines).
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If relevant to the visual cortex then such examples show that the perceived relation-
ships between different colours, the perceived relationships between different bright-
nesses, and the perceived relationships between different points in a persons field of
view (giving geometry) are all defined by the brain in a mutually dependent way.

Example

It is proposed that a system (such as the brain and its subregions) will define U and
R (up to a certain resolution) under the requirement that the efe is minimised. Hence,
for a given system (S, V, P ), we attempt to find solutions in U and R to the equation

efe(R,U, P ) = min
R′∈ΨS , U

′∈ΨV

efe(R′, U ′, P ). (1)

Definition 2 Let (S, V, P ) be as in Definition 1, let U ∈ ΨV , and let
R ∈ ΨS. The float entropy of a system state Si ∈ ΩS,V , relative to U and
R, is defined as

fe(R,U, Si) := log2(#{Sj ∈ ΩS,V : d(R,R{U, Sj}) ≤ d(R,R{U, Si})}),

where d is a suitable metric. Furthermore, the expected float entropy,
relative to U and R, is defined as

efe(R,U, P ) :=
∑

Si∈ΩS,V

P (Si)fe(R,U, Si).

Expected float entropy (efe)

An observation that is fundamental to this theory is that consciousness is awash with
underlying relationships such as those between different points in our field of view
(giving geometry), different brightnesses, different colours, different auditory frequen-
cies and volumes, and different tastes/smells etc. By representing relationships with
weighted relations, a state of the system Si and a weighted relation U on V give a
canonical choice of weighted relation R(U, Si) on S. Below is an example.

U v1 v2 v3 · · ·
v1 1 0.7 0.3 · · ·
v2 0.7 1 0.6 · · ·
v3 0.3 0.6 1 · · ·
...

...
...

...
. . .

n1 n2 n3 · · ·
Si v2 v3 v1 · · · }

R(U, Si) :=

n1 n2 n3 · · ·
n1 1 0.6 0.7 · · ·
n2 0.6 1 0.3 · · ·
n3 0.7 0.3 1 · · ·
...

...
...

...
. . .

The set of all reflexive, symmetric weighted-relations on V is denoted ΨV and on S is
denoted ΨS. For U ∈ ΨV we have R(U, Si) ∈ ΨS.

Weighted relations

Definition 1 In this theory, a system is a triple (S, V, P ), where:

S : = {n1, n2, n3, · · · } is the set of nodes of the system (e.g. where the
nodes could be individual neurons or larger mechanisms);

V : = {v1, v2, v3, · · · } is the set of node states (e.g. where the node states
could be firing frequency or tuples there of);

P : ΩS,V → [0, 1] is the inherent probability distribution on the set ΩS,V of

system states. System states have the form
n1 n2 n3 n4 · · ·

Si v2 v3 v1 v3 · · · .

Conscious experience is awash with underlying relationships. Moreover, for various
brain regions such as the visual cortex, the system is biased toward some states. Rep-
resenting this bias using a probability distribution shows that the system can define
expected quantities. We can link these facts by using expected float entropy (efe),
which is a measure of the expected amount of information needed, to specify the state
of the system, beyond what is already known about the system from relationships that
appear as parameters. Under the requirement that the relationship parameters min-
imise efe, the brain defines relationships. It is proposed that when a brain state is
interpreted in the context of these relationships the brain state acquires meaning in
the form of the relational content of the associated experience. Examples obtained
using Monte-Carlo methods (where relationship parameters are chosen uniformly at
random) suggest that efe distributions with long left tails are most important.
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